

sponsored by

SBG SYSTEMS INSIDE INSIDE SYSTEMS

WELCOME TO

Inertial + SLAM: Creating the Roadmap for Autonomous Vehicles

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

Raphaël Siryani Chief Software Architect Co-Founder SBG Systems

Jérôme Ninot Mapping Chief Founder Viametris

Pierre Lefevre Chief Technical Officer Coast Autonomous

Co-Moderator: Lori Dearman, Executive Webinar Producer

SBG SYSTEMS INSIDE UNDER SYSTEMS

Who's In the Audience?

A diverse audience of over 450 professionals registered from 45 countries, representing the following industries:

29% System Integrator

24% GNSS Equipment Manufacturer

15% Product/Application Designer

7% Professional User

5% Government

20% Other

SBG SYSTEMS INSIDE

Welcome from Inside Unmanned Systems

Richard Fischer Publisher Inside GNSS Inside Unmanned Systems

SBG SYSTEMS INSIDE GOSS unside systems

Today's Moderator

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

SBG SYSTEMS INSIDE INSIDE SYSTEMS

WELCOME TO

Inertial + SLAM: Creating the Roadmap for Autonomous Vehicles

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

Raphaël Siryani Chief Software Architect Co-Founder SBG Systems

Jérôme Ninot Mapping Chief Founder Viametris

Pierre Lefevre Chief Technical Officer Coast Autonomous

Co-Moderator: Lori Dearman, Executive Webinar Producer

SBG SYSTEMS INSIDE UNSIDE SYSTEMS

Poll #1 What is your status in autonomous vehicles, R&D or product development?(select one) A. I am in early exploration

- B. I am in R&D phase and looking for a localization solution
- C. I am in R&D phase and already have a localization solution
- D. I have an autonomous product already released

Safe & Reliable worldwide positioning

SBG SYSTEMS INSIDE UNIT OF A SYSTEMS

Summary

- Safe & Reliable Navigation
- Real time INS navigation
- Protection Level & Reliability
- Urban Test Results
- HD Map for SLAM
- Roadmap & future work

SBG Systems is a leading supplier of **Orientation**, Stabilization & Navigation solutions.

SBG SYSTEMS INSIDE UNSIDE SUSTEMENTS

Safe & Reliable Navigation

Redundancy, cooperation, multi-layers

SBG SYSTEMS INSIDE UNA SYSTEMS

Safe & Reliable Navigation

Certifications in mind

SBG SYSTEMS INSIDE SIZE IN INSIDE SYSTEMS

Real time INS Navigation

- INS basic principle
 - Integrate accelerations to get a position
 - Correct for position drift using GNSS
- Absolute position accuracy driven by GNSS
 - < 10 cm needs GNSS augmentation data</p>
 - RTK for dense urban environments
 - PPP for countryside & open sky conditions
- Loosely vs Tightly coupled INS
 - Loosely: combines GNSS positions with IMU
 - Tightly: combines space vehicle pseudo ranges with IMU

SBG SYSTEMS INSIDE CONSTRUCTION OF CONSTRUCTUON OF CONSTRUCTUNICONS OF CONSTRUCTURE OF CONSTRU

Real time INS Navigation

- 100% in house designed tightly coupled solution (RTK/PPP/INS)
- Built-in support for all constellations & signals (L1/L2/L5)
 - GPS, GLONASS, Galileo, BeiDou, QZSS
 - Ublox, Septentrio, Novatel, Trimble
- Car odometer aiding using ODB-II
- Advanced vehicle motion constraints
- Automotive lever arm / alignment estimations
- Support for any IMU or GNSS (consumer/automotive)
- C library integrated in Qinertia & real time products

Hardware Agnostic

SBG SYSTEMS INSIDE UNA SYSTEMS

Protection Level & Reliability

- RTK offers the best accuracy
 - Robust algorithm with fast convergence
 - But needs base stations every 20 km
- PPP is available worldwide
 - Fixed PPP is accurate (2-10cm) after convergence
 - But is very sensitive to GNSS signals disturbances
 - Can't be safely used in urban environments
- Tightly coupling & RAIM
 - IMU data helps predict vehicle position
 - Leverage on new signals & constellations
 - Improve RTK availability & avoid bad fixes

Focus on reliability, resilience and repeatability

SBG SYSTEMS INSIDE INSIDE SYSTEMS

Protection Level & Reliability

- Reliable localization is the key for self driving vehicles
- Tightly coupled INS can provide reliable Protection Level (PL)
- RTK/PPP RAIM greatly improved by tightly coupling
- Good IMU modeling guarantee confidence during outages
- IMU model is continuously validated online
 - Sensor bias
 - Scale Factor
 - Orthogonality
 - etc

Mandatory for certifications

SBG SYSTEMS INSIDE INSIDE SYSTEMS

Protection Level & Reliability

- Stanford diagram for INS
- Estimated vs Real Horizontal error
- Harsh Urban Test Result
- I-Sigma accuracy is conservative
- 3-Sigma is perfectly in line
- Very few outliers but to improve

1-Sigma	2-Sigma	3-Sigma	
(68%)	(95%)	(99.7%)	
< 93.3%	< 98.5%	< 99.7%	

SBG SYSTEMS Inside GNSS unmanned systems

Protection Level & Reliability

- Focus on resilience & reliability
 - IMU performance has to be well qualified
 - Avoid adding too much states in the EKF
 - Screening and calibrations mandatory
 - Maintain accuracy over temperature
 - And other life-time (15 to 30 years)
- SBG Systems expertise in MEMS IMU
 - Fully automated calibration process
 - Low end to very high-end sensors (MEMS to FOG)
 - Civilian and military IMU/INS

-	1	Acc	elerometers c	allbration					
		10	Test	Requirement	Axis	Min	Results 10	Max	Status
*	1.000	,	Run to run bias residuais	s 100 μg	× 7 2	5.476 1287 -3.223	4.011 0.921 2.775	5.049 1.098 4.710	Pass
-	and	-	10						
		R	20		_				
		Buck	110 210						
		1	100 200 -00 -15	U.	15 Temperahi	20 19 90	45	œ	12
	and the second s	10	Tert	Boudmannt	Avie		Results	3	Fratur
		10	Scale Factor	requirement	×	Min -41.412	10 2.830	Max -32.781	Stetus
		8	residuals	< 150 ppm		-53.358 43.499	7.660	-30.531 26.598	Pass
		4) 40	50 100 200 300 15	0	15	30	43	6C	→- T →- Z
>	1 123	-			Temperatu	le tra	Decides		
Sent	171	10	Test Non linearity	Requirement	Axis	Min 23.521	10	Max 22.922	Status
		٩	residuals at 2010 (a.te)	< 40 ppm of PS	Y	21.478	18:57	71,755	Pars
_		Non-linearity (ppm)	20 20 20 20 20 20 20 20 20 20 20 20 20 2	.50 .00	-300 a Acceleratio	200 r (rug)	900 BO	100	1000 + + F + F

SBG SYSTEMS INSIDE UNDER SYSTEMS

Performance Assessment with Qinertia

- In house post processing software
- Access the most accurate solution
- Replay scenarios to evaluate behavior
- Add/remove sensors & aiding data
- Powerful quality assessment display
- Consistency checks such as separation
- Several processing modes from PPK to PPP

Provides a post processed reference trajectory

SBG SYSTEMS INSIDE UNITARIAN INSIDE SYSTEMS

Urban Test Results

- Behavior evaluated in very harsh urban environment
- Several INS levels are compared to a FOG reference
- Real time RTK is available through cellular network
- More than 20% underground
- Large tunnel of 6 km long 330s

Estimated accuracy	Separation			
	Average	Std.	RMS	Max
Roll/Pitch	0.0024°	0.0006°	0.0024°	0.0043°
Heading	0.0069°	0.0002°	0.0069°	0.0074°
Estimated accuracy	Separation			
	Average	Std.	RMS	Max
Horizontal	1.13 cm	0.20 cm	1.15 cm	2.22 cm
Vertical	1.49 cm	0.37 cm	1.53 cm	3.66 cm

SBG SYSTEMS INSIDE INSIDE SYSTEMS

Urban Test Results

- Tellowiddingarwitheglass
- GNESENCORRORALIESTEINE losal time tightly
- GNUSS estimated error < 12 meters</p>
- Real Sunsble to provide Fixed RTK
- Tightly coupled INS is able to Fix INS error below 60 cm 2-Sigma RTK even in difficult conditions
 210s of unusable GNSS
- INS solution is perfectly reliable with consistent reported SD

SBG SYSTEMS INSIDE UNDER SYSTEMS

Urban Test Results

- Long tunnel of 330s and almost 6 km
- Accuracy evaluated in real life application
- Very challenging compared to simulated outages
- Real error less than 2.5 meters
- Reported SD is consistent

SBG SYSTEMS Inside GNSS unmanned systems

HD Map for SLAM

- Large area to map -> efficiency
- Continuously update HD maps
- Need for a cost effective but accurate solution
- Efficient workflow with both real time and post processing
- SBG Systems offers a full solution
 - Navsight for straight integration
 - High end Horizon FOG IMU
 - APOGEE INS for most applications
 - EKINOX for less demanding situations

SBG SYSTEMS INSIDE INSIDE SYSTEMS

HD Map for SLAM

- Qinertia post processing software
 - The the best achievable accuracy
 - Very easy and automated workflow
 - Fast processing time
 - Support for all use cases
 - Open to all standards & manufacturers

Estimated accura	cy Separation			
	Average	Std.	RMS	Max
Roll/Pitch	0.0024°	0.0006°	0.0024°	0.0043°
Heading	0.0069°	0.0002°	0.0069°	0.0074°

SBG SYSTEMS INSIDE CONSCIENCE SYSTEMS

Roadmap & Future work

- Increase low cost GNSS/IMU test database
- Vision / Lidar aiding for INS alignment & outage
- Autonomous SLAM to address parking/private areas
- Beacons (radios/visual) to overcome SLAM limitations
- Improved protection level validation
- Continue to qualify in challenging conditions
- Deep PPP limitations evaluations with PL
- Evaluate hazardous weather & conditions (drifting)

Brings repeatable & qualified absolute localization solution

Coupling INS & SLAM for Mobile Mapping Part I

Content

SBG SYSTEMS INSIDE INSIDE SYSTEMS

- SLAM Principle
- SLAM & INS Coupling methods
 - SLAM/AHRS
 - True-Heading by SLAM
- Use case
- HD Roadmap

SLAM Principle

SBG SYSTEMS INSIDE UNA SYSTEMS

- SLAM stands for "Simultaneous Localization And Mapping"
- Algorithms family initially developed for mobile robots in order to be able to build a map while locating itself inside
- 4 main steps:
 - Landmark extraction
 - Current pose estimation
 - Iandmark matching
 - Pose update and map update

SLAM Principle

Relative positioning: starting from (x=0,y=0,z=0) coordinates

- Orientation is without absolute reference starting arbitrarily (Roll=0, Pitch=0, Heading=0)
- Reference frame is natively metric

SBG SYSTEMS INSIDE UNDER SYSTEMS

SLAM Principle

SBG SYSTEMS INSIDE INSIDE SYSTEMS

- 6DOF SLAM is an high-grade DMI (Distance Measurement Instrument)
 - accurate movement measurements in the threeaxis
 - accurate rotation speed measurement in the threeaxis
 - drift w.r.t distance and not w.r.t time compare to INS
- SLAM for position drift correction (Loop Closure)
 - Looping in the same area allows drift correction with global landmark matching algorithm
 - Drift can be spread on the hole trajectory

SBG SYSTEMS INSIDE UNA SYSTEMS

Coupling is not obvious

- Reference issue:
 - GNSS/INS natively in <u>global geographic</u> Coordinate frame
 - SLAM is natively in <u>local metric</u> coordinate frame

Calibration issue:

- SLAM works from LiDAR or camera body center
- INS body has to be the center of the system

Body frame Alignment and Lever arm measurement

SBG SYSTEMS INSIDE UNDER SYSTEMS

SLAM & AHRS (Attitude and Heading Reference System)

- SLAM has no reference frame
 - INS is then coupled to provide Roll/Pitch reference
 - Trajectory can keep horizontal plan reference

- SLAM depends on sensor frame rate
 - IMU Accelerometers and Gyros aid SLAM to lock proper landmark in case of sudden movements during the pose estimation step
 - The trajectory can be issued at 200Hz with final interpolation

SBG SYSTEMS INSIDE UNA SYSTEMS

SLAM & AHRS (Attitude and Heading Reference System)

- Applications:
 - Indoor mapping
 - Indoor mobility (Indoor Shuttles, autonomous wheelchairs) in airport/shopping mall/Subways
 - Urban mobility in Deep Urban canyons (NYC, HongKong, Paris La Defense, etc.)

True-Heading by SLAM

- Low dynamics shuttles
- Repeated static stations (bus stop)
- Difficult GNSS environment
- True-heading from GNSS double-antenna not available
- SLAM overcomes in bad GNSS conditions
 - While GNSS works fine in open-sky area, tight areas and indoor are favorite place for SLAM
- SLAM has no drift while stationary
 - Maintaining the body heading is easy

SBG SYSTEMS Inside GNSS

inside unmanned systems

SBG SYSTEMS INSIDE

True-Heading by SLAM

- 1. SLAM trajectory is computed
- 2. SLAM trajectory is globally oriented w.r.t the north using GNSS position
- 3. SLAM orientation around z-axis becomes equal to the true-heading
- 4. SLAM algorithm maintains true-heading along the time
- 5. Next GNSS reception can be used to update global heading measurement

True-Heading by SLAM CASE 1: Mapping GNSS РРК Frame @20Hz 6DOF Lidar **Tight-Coupled** SLAM INS Forward/Backward True Heading Trajectory @200Hz @5Hz AHRS Roll/Pitch @200Hz

SBG SYSTEMS INSIDE

SBG SYSTEMS INSIDE INSIDE SYSTEMS

SBG SYSTEMS INSIDE INSIDE SYSTEMS

Ask the Experts

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

Raphaël Siryani Chief Software Architect Co-Founder SBG Systems

Jérôme Ninot Mapping Chief Founder Viametris

Pierre Lefevre Chief Technical Officer Coast Autonomous

SBG SYSTEMS INSIDE GONSS inside unmanned systems

Coupling INS & SLAM for Mobile Mapping Part II

Use Case

SBG SYSTEMS INSIDE SIZE STATES

Mapping dense area for Shuttle Roadmap

- GNSS reception
 - Outages of up to 50 seconds
 - Corridors 5 meters wide
 - Buildings up to 18 meters high
- Low dynamics
 - Walking speed around 1 meter per second

Use Case

SBG SYSTEMS INSIDE UNDER SYSTEMS

Mapping dense area for Shuttle Roadmap

- SLAM is used to compute body true heading
 - No true heading outage
 - High Consistency
 - Independent from GNSS reception
 - Accuracy of true heading < 0.1°
 - No need for binding initialization to align INS body
 - No need for high dynamics
- INS/GNSS tight coupling starts properly
 - INS enters in Full Navigation mode while the true heading is provided
- Accuracy compare to control points < 5cm RMS

HD Roadmap

SBG SYSTEMS INSIDE UNA SYSTEMS

From mobile mapping to HD Roadmap

Roadmap is a the high definition knowledge database:

- It contains landmarks for map-matching algorithm
- It contains lane borders and speed limits
- It contains knowledge to adapt shuttle behavior (GNSS covering, caution zone, crossings, etc.)
- Traffic lights position
- It contains the road network to compute routes

HD Roadmap

SBG SYSTEMS INSIDE UNITARIAN IN THE STATE SYSTEMS

Map Matching

- True heading SLAM to be injected in the INS/GNSS real-time positioning
- SLAM keeps positioning while GNSS outages
- Map-matching using landmarks affords global coordinates at centimeter accuracy

In blue, landmarks in the roadmap

Map Matching in progress after initialization

SBG SYSTEMS INSIDE INSIDE SYSTEMS

Pierre Lefevre Chief Technical Officer COAST Autonomous

SBG SYSTEMS INSIDE UNITARIA SYSTEMS

SBG SYSTEMS Inside GNSS unmanned systems

*MICHEL SERRES is a member immortel of L'Académie Française and has been a professor at Stanford University, in the heart of Silicon Valley, since 1984.

SBG SYSTEMS INSIDE UNSIDE SUSTEMENTS

Pro-Urban segments of the US Population are becoming Dominant

The share of automobile miles driven by Americans has dropped from **20.8 to 13.7** percent in less then 15 years* The number of nineteen-year-olds who have opted out of earning driver's licenses has **Tripled** over 40 years* **1.5** million Americans are turning **65** every year*

THEY WANT TO LIVE IN WALKABLE CITIES

* Walkable City, How downtown can save America, one step at a time, Jeff Speck

SBG SYSTEMS INSIDE UNSIDE SYSTEMS

So are cities for Cars or People?

SBG SYSTEMS INSIDE UNDER STATEMENT INSIDE

We believe the answer is **People**

COAST's Mission is to Give Cities Back to People and Allow Communities to Thrive

COAST's Vision is Autonomous Mobility-as-a-Service for People and Goods in Urban and Campus Environments.

So how do we give our Cities Back to People?

SBG SYSTEMS INSIDE GISS unmanned systems

SBG SYSTEMS Inside GNSS unmanned systems

The Self-Driving Shuttle...

...we brought it to New York city:

- COAST's P-1 was the first autonomous vehicle to operate in Manhattan
- The perfect place to show COAST's vision for future mobility
- Fleets of P-1 Shuttles can be more cost effective and flexible than Light Rail or BRT*

"Broadway is exactly where our vehicle was designed for"

*BRT = Bus Rapid Transit

While **COAST** was invented for City Centers...

SBG SYSTEMS Inside GNSS unmanned systems

We focus on 5 key principles:

- 1. Safety First
- 2. Not Dependent on GPS
- 3. People-Centric
- 4. Available & Affordable
- 5. Flexible

If you consider a vehicle with no driver at all & no operator, ... accurate LOCALIZATION is mandatory

SBG SYSTEMS INSIDE UNA SYSTEMS

LOCALIZATION

- COAST vehicles do not DEPEND on GPS or use beacons:
 - They can navigate indoors, under tree canopies or next to tall buildings (e.g. in city canyons)
 - The system uses 7 complementary layers methods of "localization"
 - The system's Intelligence determines the most significant method in any given environment

SBG SYSTEMS INSIDE SIZE STATES

LOCALIZATION

LOCALIZATION LAYERS

- GNSS Dual Antennas with Speed Sensor
- SBG Ellipse 2 D
- Odometry (Dead Reckoning)
- Map Matching
- 2D Lidar SLAM
- 3D Lidar SLAM
- Optical SLAM

DYNAMIC EVALUATION OF RESPECTIVE EFFICIENCY INCLUDING LEARNING PROCESS

SBG SYSTEMS INSIDE GNSS unside systems

Autonomous Vehicle Localization Situations

Situation	Localization
Plane desertic area	GNSS, IMU, Odometry
Indoor (Airport)	Map Matching, 2D SLAM, 3D SLAM
Urban canyon	Map Matching, 2D SLAM, 3D SLAM
Parking lot – no infrastructure	GNSS, IMU, Odometry, Optical SLAM
Tunnel	IMU, Odometry, Map Matching (lateral), Optical SLAM (longitudinal)

SBG SYSTEMS INSIDE UNITARIAN UNITARIAN SYSTEMS

...Our Technology is also perfect for Campuses and Private Sites.

Business Parks

Industrial Parks

Resorts

Railyards

<image><image><image>

a project of BCDA*

SBG SYSTEMS INSIDE UNDER SYSTEMS

SOUTHEAST ASIAN GAMES

- NEW CLARK CITY, PHILIPPINES:
 - COAST has been selected by BCDA to provide a fleet of shuttles to move athletes from the village to the athletic stadium & aquatic center
 - A pilot that can lead to full-scale deployment in the Philippines' first "Smart City"

SBG SYSTEMS Inside GNSS unmanned systems

UNION PACIFIC RAILYARD

NAME Y COUNTY RAILPORT, TEXAS:

- COAST has been selected by Harbor Rail to provide AV service at a 500acre Union Pacific railyard in Texas
- AVs will move materials from the warehouse to where men are working to repair and maintain the railcars
- AVs will allow Harbor Rail to deploy its personnel more efficiently
- Other tasks identified include cutting grass and perimeter security

SBG SYSTEMS INSIDE UNITARIA SYSTEMS

FLORIDA DOT & UCF

UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, FLORIDA

- COAST has been awarded a 3-year contract by the Florida Department of Transportation to operate P-1 Shuttles on the UCF campus
- The shuttles will begin by providing autonomous service along two routes
- UCF is the largest campus in the USA by enrollment, with 68,000 students

UNIVERSITY OF CENTRAL FLORIDA

SBG SYSTEMS INSIDE UNSIDE STATEMENT INSIDE

Visit us during our next shows:

Smart Mobility, Empowering Cities

2020 CES

or contact us:

Americas:

sales.usa@sbg-systems.com

Rest of the World: sales@sbg-systems.com

www.sbg-systems.com

SBG SYSTEMS INSIDE GRASS

Poll #3 On which autonomous vehicle segment do you mainly focus? A. Public Transportation - Autonomous Shuttles B. Trucks and fleets C. Driverless Cars D. Mine and Construction E. Agriculture

SBG SYSTEMS INSIDE

Ask the Experts – Part 2

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

Raphaël Siryani Chief Software Architect Co-Founder SBG Systems

Jérôme Ninot Mapping Chief Founder Viametris

Pierre Lefevre Chief Technical Officer Coast Autonomous

www.insideunmannedsystems.com www.sbg-systems.com/